Faculty of Health and Applied Sciences
Department of Health Sciences

QUALIFICATION: BACHELOR OF MEDICAL LABORATORY SCIENCES BACHELOR OF ENVIRONMENTAL HEALTH SCIENCES BACHELOR OF SCIENCES IN HEALTH INFORMATION SYSTEMS MANAGEMENT BACHELOR OF HUMAN NUTRITION	
QUALIFICATION CODE: O8BMLS O8BOHS O7BHIS O8BOHN	LEVEL: 5
COURSE: HEALTH SCIENCE CHEMISTRY	COURSE CODE: HSC511S
DATE: JUNE 2019	SESSION:
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Dr. Yapo Guillaume Aboua \& Mr. David Nanhapo
MODERATOR:	Dr. Marius Mutorwa

INSTRUCTIONS

1. Answer all questions.
2. Please write neatly and legibly.
3. Do not use the left side margin of the exam paper. This must be allowed for the examiner.
4. No books, notes and other additional aids are allowed.
5. Mark all answers clearly with their respective question numbers.

Permissable Material

Non programmable calculator is allowed.
Attachment: Periodic Table and formulas
THIS QUESTION PAPER CONSISTS OF 11 PAGES (Including this front page)

MATIIBIA UMIVERSITY

SECTION A [30]

QUESTION 1:

SELECT ONLY ONE APPROPRIATE ANSWER FROM THE GIVEN POSSIBILITIES
1.1. What is the formula of the compound formed between magnesium and oxygen?
a. MgO
b. $\mathrm{Mg}_{2} \mathrm{O}$
c. $\mathrm{Mg}_{2} \mathrm{O}_{3}$
d. $\mathrm{Mg}_{2} \mathrm{O}_{2}$
1.2. Isotones are the atoms of different elements having \qquad .
a. Same mass number
b. Same atomic number
c. Same number of neutrons
d. Same number of electrons
1.3. Avogadro's hypothesis relates volume of gases and \qquad .
a. Mass
b. Temperature
c. Pressure
d. Number of molecules
1.4. If a sample of matter is uniform throughout and cannot be separated into other substances by physical means, it is \qquad .
a. A homogeneous mixture
b. Either a compound or an element
c. An element
d. A compound

ПAMIBIA UПIVERSITY

1.5. Sour cream and Salt solutions are \qquad .
a. Heterogeneous mixtures
b. True solutions
c. Colloidal solutions
d. Suspensions
1.6 Which one of the following statements is false?
a. The masses of protons and neutrons are approximately the same.
b. Calcium commonly forms the $\mathrm{Ca}^{2}+$ and cation.
c. If an atom gains electron it becomes negatively charged and is called an anion.
d. Different isotopes of the same element have different chemical behaviour.
1.7 What is the molarity of a solution containing 40.0 g of NaOH in 800 ml of solution?
a. 1.00
b. 1.25
c. 0.5
d. 2.5
1.8 Which one of the following best defines the word "allotropes"?
a. Elements that possess properties intermediate between those of metals and non-metals
b. Different structural forms of an element
c. Atoms of a given atomic number that have a specific number of neutrons
d. A pair of substances that differ by H^{+}
1.9 Vapour pressure of an aqueous solution of a non-volatile and non-electrolyte solute at certain temperature T was found to be 39.964 torr. If the vapour pressure of pure solvent at same temperature is 40 torr, find the molality of aqueous solution
a. 0.05 mol
b. 0.1 mol
c. 0.004 mol
d. 0.005 mol

MAMIBIA UחIVERSITY
OF SCIEMCE AMD TECHROLOGY
1.10 What is the ground state electronic configuration of K ?
a. $1 s^{2} 2 s^{8} 3^{58} 4 s^{1}$
b. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{1}$
c. $1 s^{2} 2 s^{2} 2 p^{6} 2 d^{10} 1 s^{2}$
d. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3}$
1.11 What volumes should you mix of 0.2 M NaCl and $0.1 \mathrm{M} \mathrm{CaCl}_{2}$ solution so that in resulting solution the concentration of positive ion is 40% lesser than concentration of negative ion. Assume a total volume of solution to be 1000 ml .
a. $800 \mathrm{ml} \mathrm{NaCl}, 200 \mathrm{ml} \mathrm{CaCl} 2$
b. $400 \mathrm{ml} \mathrm{NaCl}, 600 \mathrm{ml} \mathrm{CaCl}_{2}$
c. $600 \mathrm{ml} \mathrm{NaCl}, 400 \mathrm{ml} \mathrm{CaCl} 2$
d. None of these
1.12 If 50 g oleum sample rated as 118% is mixed with 18 g water, then the correct option is?
a. The resulting solution contains 68 g of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$
b. The resulting solution contains 18 g of water and $118 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$
c. The resulting solution contains only 118 g pure $\mathrm{H}_{2} \mathrm{SO}_{4}$
d. The resulting solution contains 9 g water and $59 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$
1.13 Why does a can collapse when a vacuum pump removes air from the can?
a. The inside and outside forces balance out and crush the can.
b. The unbalanced outside force from atmospheric pressure crushes the can.
c. The atmosphere exerts pressure on the inside of the can and crushes it
d. The vacuum pump creates a force that crushes the can.
1.14 If the height of mercury in a barometer at $0^{\circ} \mathrm{C}$ is less than 760 mm Hg , then:
a. The atmospheric pressure is less than standard atmospheric pressure.
b. The atmospheric pressure is greater than standard atmospheric pressure.
c. The atmospheric pressure is equal to standard atmospheric pressure.
d. The atmospheric pressure cannot be determined.
1.15 Volumes of gaseous reactants and products in a chemical reaction can be expressed as ratios of small whole numbers;
a. if all reactants and products are gases
b. if standard temperature and pressure are maintained
c. if constant temperature and pressure are maintained
d. if each mass equals 1 mol .

QUESTION 2:
 FILL THE BLANKS BY ONLY WRITING DOWN THE NUMBER AND THE CORRECT WORDS OR EXPRESSION.

2.1. The \qquad is the number of protons in the nucleus of an atom.
2.2. \qquad were discovered by Ernest Rutherford in 1910.
2.3. \qquad are a family of compounds containing only hydrogen and carbon.

2.4.

\qquad is a homogeneous mixture.
2.5. The quantum numbers provide us with a picture of the \qquad arrangement
2.6. The Group 2 elements in periodical Table are known as the \qquad earth metals.
2.7. The noble gases already have a full \qquad Shell.
2.8. Electronegativity is the ability of an atom to attract \qquad to itself.
2.9. \qquad also increases from the bottom to the top of a column in
the periodic table.
2.10. Organic compounds are often classified according to the type (s) of groups present.
2.11. The pressure of a gas is directly proportional to the number of moles of the gas if both volume and \qquad are constant.
2.12. The force per unit area on a surface is called \qquad .
2.13. The pressure exerted by each gas in a mixture is called the \qquad of that gas.
2.14. The lowest possible temperature, corresponding to zero on the kelvin scale, is referred to as \qquad .
2.15 . \qquad law establish that equal volumes of gases at the same temperature and pressure contain equal numbers of molecules.

MATIBIA URIVERSITY

OF SCIEMCE AחD TECHMOLOGY

SECTION B [70]

QUESTION 3

3.1. Match the physical state (number) to a state or states to which the characterizations apply (letter) by only writing down the number and the letter.

Physical state			Characteristics
	Indefinite shape	A	freezing
2	Opposite of evaporation	B	Solid and gas states
3	Cohesive forces dominate over disruptive forces	C	Liquid state only
4	Particles are relatively close together.	D	condensation
5	An endothermic change	E	deposition
		F	evaporation
		G	sublimation
	H	Solid state only	

3.2. Complete the following table by filling in the compound name or formula as required.

Name	Formula
Barium bromide	
	KMnO
4	
	$\mathrm{H}_{2} \mathrm{SO}_{3}$
	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
dinitrogen pentaoxide	

MATIIBIA UMIVERSITY
OF SCIEMCE AMD TECHMOLOGY
3.3. Name and label four (4) functional groups in the structure and indicate primary $\left(1^{\circ}\right)$, secondary $\left(2^{\circ}\right)$ or tertiary $\left(3^{\circ}\right)$ structure.

3.4. Name structures D, E and F

QUESTION 4

4.1. During a practical class you have been asked:
a. How many grams of Potassium dichromate, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, do you require to prepare 250 mL solution with a concentration of 2.16 M ?
b. To add 0.381 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ to a reaction mixture and to calculate the volume in millilitres of a 2.53 M glucose solution that you should use for this addition.

TAMIBIA URIVERSITY
4.2. Calculate the molarity of the following:
a A commercial bleach solution containing 5.25% (by mass) of NaClO in water. It has a density of $1.08 \mathrm{~g} / \mathrm{mL}$ (Hints: assume you have 1.00 L of solution; molar mass of $\mathrm{NaClO} 74.4 \mathrm{~g} / \mathrm{mol})$
b A 15.0% solution of NaOH has 15.0 g for 100 g of solution.

4.3. Calculate the following:

a The mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ that must be used to make 700 mL of a $0.136 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution.
b Calculate the volume (in mL) of 0.3500 M NaOH required to titrate 20.00 mL of
$0.2500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. The reaction is $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \Longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
c How many grams of sodium nitrate are produced when 20.0 g of sodium azide, NaN_{3}, react according to the following equation?

$$
\mathrm{NaN}_{3}+\mathrm{AgNO}_{3} \Longrightarrow \mathrm{AgN}_{3}+\mathrm{NaNO}_{3}
$$

4.4. Consider the reaction $\quad 4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}\left(\mathrm{~g} \longrightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})\right.$ Identify the limiting reagent in each of the following reaction mixtures. What mass of $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ will be produced in each case?
a. $\quad 1.0 \mathrm{~mol} \mathrm{Al}$ and $1.0 \mathrm{~mol} \mathrm{O}_{2}$
b. 0.75 mol Al and $0.50 \mathrm{~mol} \mathrm{O}_{2}$

QUESTION 5

5.1. Calculate the following quantities:
a. Mass, in grams, of 0.105 moles sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$
b. Moles of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ in 143.50 g of this substance
c. Number of molecules in $1.0 \times 10^{-6} \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
d. Number of N atoms in $0.410 \mathrm{~mol} \mathrm{NH}_{3}$

MATIBIA URIVERSITY

 OF SCIEMCE AחD TECHROLOGY> 5.2. Ascorbic acid (vitamin C) contains $40.92 \% \mathrm{C}, 4.58 \% \mathrm{H}$, and $54.50 \% \mathrm{O}$ by mass. What is the empirical formula of ascorbic acid?
5.3. Calculate the number of aluminium atoms in a block of pure aluminium that measures $2.0 \mathrm{~cm} \times 2.0 \mathrm{~cm} \times 3.0 \mathrm{~cm}$. The density of aluminium is $2.7 \mathrm{~g} \mathrm{~cm}^{-3}$.
5.4. A mixture of hydrogen (1.01 g) and chlorine $(17.73 \mathrm{~g})$ in a container at 300 K has a total gas pressure of 98.8 kPa . What is the partial pressure of hydrogen in the mixture?
5.5. At 338 K , pure PCl_{5} gas is present in a flask at a pressure of 26.7 kPa . At 473 K this is completely dissociated into PCl_{3} gas and Cl_{2} gas. Calculate the pressure in the flask at 473 K.

END OF EXAM QUESTIONS

חAmIBIA UחIVERSITY

of science and technology

$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=101.3 \mathrm{kPa}$
$\mathrm{R}=0.0821 \mathrm{Latm} / \mathrm{mol} K$
$P_{r}=P_{A}+P_{B}$

Avogadro constant $N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

USEPUL COMVERSYON PACTORS AND REATIONSHIIS	
Length	Energy (derived)
St unit meterim)	
$1 \mathrm{~km}=0.62137 \mathrm{mi}$	$1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$
$1 \mathrm{mi}=5280 \mathrm{ft}$	$1 \mathrm{I}=0.2390 \mathrm{csl}$
$=1.5093 \mathrm{~km}$	$=1 \mathrm{C} \times 1 \mathrm{~V}$
$1 \mathrm{~m}=1.0936 \mathrm{yd}$	$1 \mathrm{cal}=4.184 \mathrm{~T}$
$1 \mathrm{im}=2.54 \mathrm{~cm}$ (exactly)	$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$\begin{gathered} 1 \mathrm{~cm}=0.30370 \mathrm{inc} . \\ 1 \mathrm{~A}-10^{-10} \mathrm{~m} \end{gathered}$	Pressure (derived) S(
Mass	$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$
	= $1 \mathrm{k} / \mathrm{m}^{\text {m- }}{ }^{2}$
$1 \mathrm{~kg}=2.2046 \mathrm{~b}$	$1 \mathrm{sim}=101325 \mathrm{~Pa}$.
$1 \mathrm{~b}=453.59 \mathrm{~g}$	$=760$ torr ${ }^{2}$
$\begin{aligned} & \\ &= 160 c \\ & 1 \mathrm{amu}=1.6605402 \times\end{aligned}$	$=14,70 \mathrm{lb} / \mathrm{in}^{2}$
Temperature	Volume (derived)
Sundithin (A)	Sumu'
$0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$	$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
- $-459.67^{\circ} \mathrm{F}$	$=1 \mathrm{dm}^{3}$
$\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$	$=10^{3} \mathrm{~cm}^{3}$
${ }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32^{\circ}\right)$	$=1.0567 \mathrm{gt}$
${ }^{\circ} \mathrm{F}={ }^{\circ}{ }^{\circ} \mathrm{C}+32^{\circ}$	$\begin{aligned} 1 \mathrm{~g}^{\mathrm{a}}= & =4 \mathrm{qt} \\ & =3.7854\end{aligned}$
	$1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$
	$1 \mathrm{in}^{3}=16.4 \mathrm{~cm}^{3}$

Properties	
Molceular Formula	H_{2} ()
Molar Mass	$18.015 \mathrm{gmm} \mathrm{mo}^{-1}$
Dersisily	1 gcc
Boiling point	$1000^{6} \mathrm{CaH}$ amm
Freezing pxist	$0^{\circ} \mathrm{Ca} 1 \mathrm{~atm}$
Phase	Liquid
Triple paint	273.16 K a 4.6 torr
Heat off fusion	$6.013 \mathrm{k} \mathrm{mol}{ }^{\text {m }}$
Heat of viporiation	$40.63 \mathrm{k} \mathrm{mol}^{-1}$

sp!ou!!pe..
sp!oueytue:.

